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Abstract —A theoretical analysis is presented for the radiation char-
acteristics of a dielectric slab waveguide periodically loaded with thick
metal strips. A boundary-integral-equation formulation is employed to
describe the fields in the grating layer. Through numerical calculations, we
show that the leakage constant of the fundamental TM mode is much
larger than that of the fundamental TE mode. This property will find
application in mode filters for millimeter- and submillimeter-wave in-
tegrated circuits.

I. INTRODUCTION

PEN PERIODIC dielectric waveguides are of great

importance as, for example, grating couplers at optical
wavelengths [1] and leaky-wave antennas at millimeter-
wave frequencies [2], for coupling dielectric-based in-
tegrated circuits and the outer free space.

In optical grating couplers, the periodic variation is
made maijnly in the form of periodic corrugations of the
waveguide surface or periodic permittivity modulations of
one of the constituent layers [3]. For millimeter- and
submillimeter-wave applications, we can introduce the
periodic perturbation by loading a dielectric waveguide
with metal strips in addition to the means used at optical
wavelengths [4], [5].

Theoretical treatments of such a strip-loaded dielectric
waveguide reported have so far been confined to the case
where the metal strips are infinitely thin [6]-[8]. In this
paper, we present an analysis employing a boundary-
integral-equation formulation for the radiation characteris-
tics of a dielectric slab waveguide loaded with thick metal
strips. Through numerical calculations, we show that the
leakage constant of the fundamental TM mode is much
larger than that of the fundamental TE mode. Utilizing
this property, we will be able to make a mode filter [9] for
millimeter- and submillimeter-wave integrated circuits.

II. DERIVATION OF THE CHARACTERISTIC EQUATION

The radiation characteristics of open periodic wave-
guides can be described mainly by the complex propa-
gation constant 8, of the fundamental space harmonic
supported by the structure. In this section, we derive the
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Fig. 1. Periodically strip-loaded dielectric slab waveguide.

characteristic equation, from which we can evaluate S,
numerically by means of a boundary-integral-equation for-
mulation.

Fig. 1 shows the periodic waveguide to be analyzed in
this paper. The dielectric slab has thickness # and relative
permittivity ¢,. With a period d, the slab is loaded with
perfectly conducting metal strips which have a rectangular
cross section of thickness ¢ and width w. The region
between the metal strips is assumed to be filled with a
medium of relative permittivity e,. It is assumed that the
fields have no variation in the y direction and that the
time dependence of the field is exp (jwt).

A. Boundary Integral Equation

We denote the region 0 <x<¢,0<z<d~—w in Fig. 1
as R, and the contour enclosing R as L (see Fig. 2). The
electromagnetic field ¢ in R satisfies the two-dimensional
Helmholtz equation

V7 o+kieH=0 (1)
where
E, for TE polarization
¢= { H, for TM polarization
d d

=qg.—+ta,—.
Vi *Ix ‘0z

Here a, and a, are the unit vectors along the x and z
directions, respectively, and k is the free-space wavenum-
ber. With the aid of the two-dimensional Green’s function,
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Fig. 2. Region in which the fields are described by a boundary-integral
equation.

(1) can be converted to the following boundary-integral
equation whose unknowns are ¢ and d¢/dn on L [10],
[11]):

1 d¢ ay

= = ——0¢—|dl 2

5600 = f v —o50) @)
where r, is a point on L,f denotes the principal value
integral with singularities removed, d/dn is the outward
normal derivative on L, and ¢ is the Bessel function of the
second kind and zeroth order!

1
Y(r,n)=- ZNo(koflgﬂV— "0|)-

After dividing L into N segments, we expand the un-
known functions ¢ and d¢/dn in series of step functions
S;, each of which has a constant value of 1 over the ith
segment, as follows:

¢ = .gl u,S,(r) (3a)

g% = '§1 4,5:(r)- (3b)

Substituting (3a) and (3b) into (2), and locating the point
r, on the midpoint of each segment, we obtain a matrix
equation of the form

(G)(u)+(H)(g)=0 (4)
where G' and H are square matrices of order N, and # and
q are unknown column vectors with elements u;, and g,
(i =1~ N), respectively.

B. Boundary Condition at x =t

According to Floquet’s theorem, we express the field ¢
in the upper half space x > ¢ by

00
E a"e—jki‘.'.)(X*t)e—jﬁnZ (5)

n=—o0

4):

1The Hankel function of the second kind and zeroth order H§® is
usually employed as the Green’s function when the two-dimensional
Helmholtz differential equation is converted to a boundary-integral equa-
tion.

In this paper, since we describe the field by an integral equation in the
region inside a closed contour, we can use the Bessel function of the
second kind N, instead of H{? as the Green’s function.
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Fig. 3. Derivation of the boundary condition at x = ¢. (a) Division of
the boundary x = ¢, 0 < z < d. (b) Step function on the boundary.

where

2nw

.3,.=.30+7

ki =+ (k5= 87)" (©)

n

In the above expression, B, £ B — ja is the eigenvalue of
the periodic waveguide to be determined. The real part 8
is the phase constant of the fundamental space harmonic
and the imaginary part a (a> 0) is the attenuation con-
stant due to leakage of the guided-wave energy into free
space. The square root sign in (6) must be chosen so that
[12]

Im[k@] <0 forn=0
Im|k@®]| <0 if Re <0 :
[%42] [5.] for <0,

Im[k@] >0  ifRe[B,]>0

After dividing the boundary x=t¢, 0 <z <d into M seg-
ments (0 <z <d—w into M, segments, and d —w<z<d
mmto M — M, segments, see Fig. 3(a)), we express the fields
¢ and d¢/dn (3/dn=3d/dx) on this boundary using the
step functions S,,(z) (see Fig. 3(b)) as

o= glumSm(z) (7a)
J M
0= L anSi(2) (70)
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where
u,=0 (M +1<m<M)
4n=0(M+1<m< M)
From (5) and (7), we obtain at x =¢

for TE polarization

for TM polarization.

M 0

m=1 n=—o
M 00

vg X GnSp= L (= Jj)k{ae P (8b)
m=1 n=—00
where
1 for TE polarization
"¢\ 1/¢ R for TM polarization.

Truncating the infinite summation in the right-hand side
of (8a) and (8b) into a summation of M terms (n runs
from —M/2 to M/2—1 when M is even, and from
—(M-1)/2 to (M —1)/2 when M is odd), and equating
both sides of (8a) and (8b), respectively, at the midpoint of
each segment, we can obtain the following matrix expres-
sions:

L1 A],—M, A1,M,, a_y,
Up AM,—M, AM,M,, Ay,
a_y,
Al4|:
aMu
91 1 K-M, 0 a_u,
. — A
: v
adu 8 0 KM,, au,
d_MI
Al Bi|:
ay,
where
z,tz,.1
Amn=exp(—jﬂn——i—i), K,=— jki
m=1~M, n=-M~M,
M = M/2 when M is even
(M =-1),2 when M is odd
M= M/2-1 when M is even
“T\(M-1)/2 when M is odd.

A and B are square matrices of order M. Let the sub-
matrices (of order M) of BA~! and AB™! be Cy and
C\p respectively, as follows:

o)) (o)) (el )

The boundary condition imposed on the unknowns u,,
and q,, (m=1~ M,) on the boundary x =¢,0<z<d—w
can be expressed as follows:

4 (51

= Cm: for TE polarization  (9a)
qu uM1

uy a1

=|Cm for TM polarization. (9b)
Up, am,

C. Boundary Condition at x =0

We express the field ¢ in the dielectric layer — 2 <x <0
and in the lower half space x < — h, respectively, by

[o0]
—h<x<0: ¢= Y {b,cosk{x+c,sink{)x}e

n=-

[*2]
x<—h: ¢= Y deMREthg iz
: . ‘

n=—o0

k) = (e, — B2)™

n

Since the tangential components of the electromagnetic
fields are continuous at the boundary x = — h, we have

sk ankh
" op kD + k@D tan kDR "

where
1 for TE polarization
V"— 1/e, for TM polarization.
Hence, the field ¢ in — h < x <0 is expressed by
= D = rkQ an kQh
- Ny == sin k()
¢= X {°°S KX kO e ankn

-be —JBuz (10)

We expand the fields ¢ and d¢/dn (3/3n=—3/dx)
on the boundary x =0, 0 <z < d using step functions as
follows: ‘

M/
o= u,S,(z)
m=1

do M

E - mzzlqmsm(z)'
Equating the fields ¢ and d¢/dn given by the above
expressions to ¢ and d¢/dn obtained from (10), and with

a procedure similar to that in the preceding subsection, we
have the boundary condition at x =0 of the following
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Fig. 4. Vectors with elements u, and ¢, on each side of L.
form:
a u{
=|Dmw;||: for TE polarization . (11a)
dmy Uy
Ui 9
=|Pm||: for TM polarization. (11b)
U 9

D. Characteristic Equation for TE Polarization

The vectors with elements #; and g, on each side of L
are designated as shown in Fig. 4. Equations (4), (92), and
(11a) can be written, respectively, as

u; UH

u, 9,
(G, G, G, Gy) u, +(H, H, H, H,) 4 =0

uy q,

(12)
(94) = (CTE)(”4) (13)
(92) = (D) (uy). (14)

From the boundary condition at z=0 and z=d —w, we
have

(u;)=0 (15)
(u;) =0. (16)
Eliminating unknowns by using (13)~(16), we can reduce

(12) to
u,
L
(G.+HDr. G+HCr H, H)| '
q;3
u,
u
q;

where Fig is a square matrix whose order is equal to the
number of the segments into which L is divided. The
characteristic equation which determines the eigenvalue 8,
is

det(Frg) =0.

o 571 \__ 1
5.70F .
0,038} .
1c:;0.037- \ -
0036} -
0.32. .

S I N
= 031 ]
L A
T 'l I T’
20 80 120 160

N
@
se2t 0 -
© 541 \ 1
(o0 K

540} -
034} :

-] \-\
B o33t 1
785} /—' -

9

f__78.4:' ]
T L T
40 80 120 160

(b)

Fig. 5. Convergence of the solution. e, =118, €, =10, h=0.54,
kod =21, w=0.5d, t=05d. (a) TEO mode. (b) TMO mode

The corresponding characteristic equation for TM polar-
ization can be obtained in similar fashion.

III. NuMERICAL RESULTS

In the numerical calculations in this section, we assume
that the medium of the dielectric slab is high-resistivity
silicon with ¢, =11.8, normalized slab thickness /& /d = 0.5,
and normalized frequency k,d = 2.1. We concentrate our
calculations on the fundamental TE and TM modes (TE,
and TM, modes). For the waveguide dimensions and the
frequency assumed in our calculations, only the space
harmonic of n = —1 propagates away from the waveguide.
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Fig. 6. Phase constant 8, leakage constant a, and partition of radiated
power 7 versus strip thickness ¢.

Fig. 5 shows the convergence of the solution 8, =8 — ja
and 7 with an increasing number of the segments N, where
all the segments have equal length. Here, 7, the ratio of the
power radiated into the upper half space to the total
radiated power, is defined by [13]

2
la_4

N=T""2 . 3 2°
|a—1|2+|d—1|2

From Fig. 5, the convergence is found to be good for both
polarizations.

Fig. 6 shows a plot of Bd, ad, and 7 as a function of the
normalized metal-strip thickness ¢/d. We also calculated
those values for 7 — 0 with the method described in [7]
and plotted them on the axis ¢/d = 0 in Fig. 6. From this
figure, it can be seen that 8 and a of the TE; mode take
constant values for ¢ /d larger than 0.3. This is because the

2We used subsectional step functions as both the expanding functions
for the surface current density over the strip and the weighting functions.
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Fig. 7. Effect of the value of ¢; on the radiation characteristics of the
TE, mode.

electromagnetic fields of this polarization cannot propa-
gate (being evanescent, instead) along the + x direction
between the metal strips for d —w =0.5d at ko,d =2.1, so
that further increases of ¢/d beyond a certain value have
little effect on the field guided along the dielectric slab.
Owing  to the decay of the fields mentioned above, 7
decreases to zero with increasing ¢/d. For TM polariza-
tion, on the other hand, electromagnetic fields can propa-
gate as a TEM wave along the x direction between the
strips. Therefore, as ¢/d increases, more energy is stored
between the strips and larger power is radiated in the
upward as well as downward directions away from the
waveguide. The leakage constant of the TM, mode is
about 18 times larger than that of the TE, mode for
t/d = 0.8 in Fig. 6. This property is useful in constructing
a mode filter for millimeter- and submillimeter-wave in-
tegrated circuits. .

The effect of relative permittivity e, of the medium
between the metal strips on the radiation characteristics
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power n versus strip width w.

for TE polarization is shown in Fig. 7. From this figure, it
is found that a larger value of €, permits larger power to
radiate. The lowest-order TE mode supported by the paral-
lel-plate waveguide corresponding to the region between
the strips can propagate along the + x direction when
€,>8.95. The leakage constant of the TE, mode for
€, = 8.95 is approximately equal to that of the TM;, mode
for e, =1.0.

Fig. 8 shows a plot of 8d, ad, and 5 as a function of the
normalized strip width w /d for ¢t /d = 0.05. The maximum
leakage occurs at w/d = 0.27 for the TE, mode, and at
w/d = 0.48 for the TM;, mode. In this figure, it should be
noted that the leakage constant o does not seem to vanish
even if the strip width w decreases to zero for the TE,
mode whose electric field lies parallel to the strips.

IV. CONCLUSIONS

We have analyzed theoretically the radiation characteris-
tics of a dielectric slab waveguide periodically loaded with
thick metal strips. The leakage constant, the phase con-
stant of the fundamental space harmonic, and the partition

of power radiated into the upper and the lower half spaces
have been calculated numerically for both the TE, and
TM, modes. It has been found that the leakage constant
of the TM, mode is much larger than that of the TE,
mode. This property will find application in mode filters
for millimeter- and submillimeter-wave integrated circuits.

The analysis method employing a boundary-integral-
equation formulation as presented in this paper is useful in
analyzing periodic waveguides with metal strips of arbi-
trary cross section and corrugated dielectric waveguides
having an arbitrary groove profile {14], [15].
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