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Radiation Characteristics of a Dielectric Slab
Waveguide Periodically Loaded with Thick
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Abstruct —A theoretical analysis is presented for the radiation char-

acteristics of a dielectric slab wavegnfde periodically loaded with thick

metal strips. A houndery-integrcl-equation formulation is employed to

describe the fieIds in the grating layer. Through nomericaf calcofations, we

show that the leakage constant of the fundmnentat TM mode is much

larger than that of the fundamental ‘IX mode. This property tiff find

applicationin mode fiiters for millimeter- iiod suhmillkneter.wave in-

tegrated circoits.

I. INTRODUCTION

oPEN PERIODIC dielectric waveguides are of great

importance as, for example, grating couplers at optical

wavelengths [1] and leaky-wave antenpas at millimeter-

wave frequencies [2], for coupling dielectric-based in-

tegrated circuits and the outer free space.

In optical grating couplers, the periodic variation is

made ma@y in the form of periodic corrugations of the

waveguide surface or periodic permittivity modulations of

one of the constituent layers [3]. For millimeter- and

subrnillimeter-wave applications, we can introduce the

periodic perturbation by loading a dielectric waveguide

with metal strips in addition to the means used at optical

wavelengths [4], [5].

Theoretical treatments of such a strip-loaded dielectric

waveguide reported have so far been confined to the case

where the metal strips are infinitely thin [6]–[8]. In this

paper, we present an analysis employing a boundary-

integral-equation formulation for the radiation characteris-

tics of a dielectric slab waveguide loaded with thick metal

strips. Through numerical calculations, we show that the

leakage constant of the fundamental TM mode is much

larger than that of the fundamental TE mode. Utilizing

this property, we will be able to make a mode filter [9] for

millimeter- and submillimeter-wave integrated circuits.

H. DERIVATION OF THE CHARACTERISTIC EQUATION

The radiation characteristics of open periodic wave-

guides can be described mainly by the complex propa-

gation constant & of the fundamental space harmonic

supported by the structure. In this section, we derive the
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Fig. 1. Periodically strip-loaded dielectric slab waveguide.

characteristic equation, from which we can evaluate &

numerically by means of a boundary-integral-equation for-

mulation.

Fig. 1 shows the periodic waveguide to be analyzed “in

this paper. The dielectric slab has thickness h and relative

permittivity f,. With a period d, the slab @ loaded with

perfeetly conducting metal strips which have a rectangular

cross section of thickness t and width w. The region

between the metal st~ps is assumed to be filled with a

medium of relative permittivity Cg. It is assumed that the

fields have no variation in the y direction and that the

time dependence of the field is exp (JJt).

A. Boundary Integral Equation

Wedenote theregion O<x<t, O<z<d-w in Fig.1

as R, and the contour enclosing R as L (see Fig. 2). The

electromagnetic field @ in R satisfies the two-dimensional

Hehnholtz equation

V:+ + k;cg$ = O (1)

where

{

E for TE polarization
$= ~’

for TM polarization
Y

da

“=a’z+azz’
Here ax and a= are the unit vectors along the x and z

directions, respectively, and k. is the free-space wavenum-

ber. With the aid of the two-dimensional Green’s function,
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Fig. 2. Region in which the fields are described by a boundary-integral
equation.
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(1) can be converted to the following boundary-integral

equation whose unkno~s are @ and 6J@/dn on L [10],

[11]:

(2)

where r. is a point on L, f denotes the principal value

integral with singularities removed, 8/i7n is the outward

normal derivative on L, and ~ is the Bessel function of the

second kind and zeroth orderl (b)

~(r, rO) = - ~NO(kOc~/21r- r,l).

After dividing L into N segments, we expand the un-

known functions @ and d@/dn in series of step functions

Si, each of which has a constant value of 1 over the ith

segment, as follows:

N

(3b)

Substituting (3a) and (3b) into (2), and locating the point

r. on the midpoint of each segment, we obtain a matrix

equation of the form

(G)(z/)+(H)(q)=O (4)

where G and H are square matrices of order N, and u and

q are unknown column vectors with elements Ui and qi

(i= 1- N), respectively.

B. Boundary Condition at x = t

According to Floquet’s theorem, we express the field @

in the upper half space x > t by

+ = ~ ~ne-jk$?(x-t)e-j f?tz (5)

1The Hankel function of the second kind and zeroth order H$z) is
usually employed as the Green’s function when the two-dimensionaf
Helmholtz differential equation is converted to a boundary-integral equa-
tion.

In this paper, since we describe the field by an integral equation in the
region inside a closed contour, we can use the Bessel function of the

second kind IV. instead of H$z) as the Green’s function.

*Z
.m+l

Fig. 3. Derivation of the boundary condition at x = t. (a) Division of

the boundary x = t, 0< z < d. (6) Step function on the boundary.

where

2n9r
P.=A3+T

kg) = *(k: –p;)? (6)

In the above expression, & ~ ~ – ja is the eigenvalue of

the periodic waveguide to be determined. The real part /?

is the phase constant of the fundamental space harmonic

and the imaginary part a (a> O) is the attenuation con-

stant due to leakage of the guided-wave energy into free

space. The square root sign in (6) must be chosen so that

[12]

Im[kf&)] <0 forn>O

Im[k~)] <0 if Re[J1. ]<0

)

for n <O.
Im[k~)] >0 if Re[/3. ]>0

After dividing the boundary x = t, O < z < d into M seg-

ments(O <z<d–winto M1 segments, andd-w<z<d

into M – Ml segments, see Fig. 3(a)), we express the fields

@ and ii#/an ( 6’/i3n = i3/ax) on this boundary using the

step functions Sin(z) (see Fig. 3(b)) as

0= f %%(z) (7a)
~=1

(7b)
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where

Um =o(M1+l<nz<M) for TE polarization

qm=o(iill+l<?n<ll) for TM polarization.

From (5) and (7), we obtain at x = t

(8a)
~=1 ~=.~

M w

Vg ~ qmsm= ~ ( — J“)k~n)ane–Jfl.z (8b)
~=~ fi.-~

where

{

1 for TE polarization

‘g= I/cg for TM polarization.

Truncating the infinite summation in the right-hand side

of (8a) and (8b) into a summation of M terms (n runs

from – M/2 to M/2 – 1 when M is even, and from

– (M – 1)/2 to (M – 1)/2 when M is odd), and equating

both sides of (8a) and (8b), respectively, at the midpoint of

each segment, we can obtain the following matrix expres-

sions:

where

(
Zm+ Z*+l,

A mn = exp
)

–JP. ~ , Kn = – jk~)

m=l-M, n=– Ml-MU

(

when M is even

“= 72-1)/2 when M is odd

{

M/2 – 1 when M is even

‘u= (M-1)//2 when M is odd.

A and B are square matrices of order M. Let the sub-
matrices (of order Ml) of BA -1 and AB -1 be CT~ and

CTM! respectively, as follows:

(B)(A”1)=(:4---)(A)(B-’)=F-:4---)

The boundary condition imposed on the unknowns Um

andq. (m=l-MJ ontheboundaryx =t, O<z<d–w
can be expressed as follows:

[U=ICTE)H‘OrTEpO1fiz“a)
K)=[c+li ‘for TM polarization (9b)

C. Bounda~ Condition at x = O

We express the field @in the dielectric layer – h < x <0

and in the lower half space x < – h, respectively, by

m

n=—w

where

Since the tangential components of the electromagnetic

fields are continuous at the boundary x = – h, we have

where

{

1 for TE polarization
V,= ~/er for TM polarization.

Hence, the field @ in – h < x <0 is expressed by

.b~e-JpnZ. (10)

We expand the fields @ and d@/iln ( 6’/tln = – d/dx)

on the boundary x = O, 0< z < d using step functions as

follows:

. .

@= z K&(z)
~=1

Equating the fields @ and d@/d n given by the above

expressions to @ and &#/dn obtained from (10), and with

a procedure similar to that in the preceding subsection, we

have the boundary condition at x = O of the following
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Fig. 4. Vectors with elements u, and q, on each side of L.

form:

[:~)=1+[:~~ ‘OrTEpO’afizatiOn ‘“a) g

l:~)=lDTMl:)

for TM polarization. (llb)

D. Characteristic Equation for TE Polarization
—

The vectors with elements Ui and q, on each side of L
are designated as shown in Fig. 4. Equations (4), (9a), and

(ha) can be written, respectively, as

H+(H1H2H3‘4)H=”(Gl GZ G, G4) U3

(12)

(94) = (%d(~it) (13)

(92) = (DTE)(~2). (14)

From the boundary condition at z = O and z = d – w, we

have

(u,)=” (15)

(Zq)=o. (16)

Eliminating unknowns by using (13)–(16), we can reduce

(12) to

(G2 + H2DTE G.+ H4Cm H, H,) ;:

where FTE is a square matrix whose order is equal to the

number of the segments into which L is divided. The

characteristic equation which determines the eigenvalue /30

is

det(l’m)=O.

%~y’j
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Fig. 5. Convergence of the solution. c,= 11.8, Cg= 1.0, h = 0.5d,
kod = 2.1, w = 0.5d, t= 0.5d. (a) TEO mode. (b) TMO mode.

The corresponding characteristic equation for TM polar-

ization can be obtained in similar fashion.

III. NUMERICAL RESULTS

In the numerical calculations in this section, we assume

that the medium of the dielectric slab is high-resistivity

silicon with C,= 11.8, normalized slab thickness h/d = 0.5,

and normalized frequency kOd = 2.1. We concentrate our

calculations on the fundamental TE and TM modes (TEO

and TMO modes). For the waveguide dimensions and the

frequency assumed in our calculations, only the space

harmonic of n = – 1 propagates away from the waveguide.
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Fig. 5 shows the convergence of the solution&=/3 – ia. .
and ~ with an increasing number of the segments N, where

all the segments have equal length. Here, q, the ratio of the

power radiated into the upper half space to the total

radiated power, is defined by [13]

la-112

‘= la_ J2+-ld_112”

From Fig. 5, the convergence is found to be good for both

polarizations.

Fig. 6 shows a plot of ~d, ad, and q as a function of the

norma~ed metal-strip thickness t/d. We also calculated

those values for t ~ O with the method described in [7] 2

and plotted them on the axis t/d = O in Fig. 6. From this

figure, it can be seen that J3 and a of the TEO mode take

constant values for t/d larger than 0.3. This is because the

2We used subsectional step functions as both the expanding functions
for the surface current density over the strip and the weighting functions.
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Effect of the value of Cg on the radiation characteristics of the
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‘l’MO mode.

electromagnetic fields of this polarization cannot propa-

gate (being evanescent, instead) along the + x direction

between the metal strips for d – w = 0.5d at kod = 2.1, so

that further increases of t/d beyond a certain value have

little effect on the field guided along the dielectric slab.

Owing- to the decay of the fields mentioned above, q

decreases to zero with increasing t/d. For TM polariza-

tion, on the other hand, electromagnetic fields can propa-

gate as a TEM wave along the x direction between the

strips. Therefore, as t/d increases, more energy is stored

between the strips and larger power is radiated in the

upward as well as downward directions away from the

waveguide. The leakage constant of the TMO mode is

about 18 times larger than that of the TEO mode for

t/d = 0.8 in Fig. 6. This property is useful in constructing

a mode filter for millimeter- and subrnillimeter-wave in-

tegrated circuits.

The effect of relative permittivity (g of the medium

between the metal strips on the radiation characteristics
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for TE polarization is shown in Fig. 7. From this figure, it

is found that a larger value of ●g permits larger power to

radiate. The lowest-order TE mode supported by the paral-

lel-plate waveguide corresponding to the region between

the strips can propagate along the + x direction when

Cg >8.95. The leakage constant of the TEO mode for

e~ = 8.95 is approximately equal to that of the TM ~ mode

forcg=l.O.

Fig. 8 shows a plot of /3d, ad, and q as a function of the

normalized strip width w/d for t/d = 0.05. The maximum

leakage occurs at w/d= 0.27 for the TEO mode, and at

w/d = 0.48 for the TMO mode. In this figure, it should be

noted that the leakage constant a does not seem to vanish

even if the strip width w decreases to zero for the TEO

mode whose electric field lies parallel to the strips.

IV. CONCLUSIONS

We have analyzed theoretically the radiation characteris-

tics of a dielectric slab waveguide periodically loaded with

thick metal strips. The leakage constant, the phase con-

stant of the fundamental space harmonic, and the partition

of power radiated into the upper and the lower half spaces

have been calculated numerically for both the TEO and

TMO modes. It has been found that the leakage constant

of the TMO mode is much larger than that of the TEO

mode. This property will find application in mode filters

for millimeter- and submillimeter-wave integrated circuits.

The analysis method employing a boundary-integral-

equation formulation as presented in this paper is useful in

analyzing periodic waveguides with metal strips of arbi-

trary cross section and corrugated dielectric waveguides

having an arbitrary groove profile [14], [15].
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